Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
mBio ; 14(2): e0012723, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2274752

ABSTRACT

Viruses are known to co-opt host machinery for translation initiation, but less is known about which host factors are required for the formation of ribosomes used to synthesize viral proteins. Using a loss-of-function CRISPR screen, we show that synthesis of a flavivirus-encoded fluorescent reporter depends on multiple host factors, including several 60S ribosome biogenesis proteins. Viral phenotyping revealed that two of these factors, SBDS, a known ribosome biogenesis factor, and the relatively uncharacterized protein SPATA5, were broadly required for replication of flaviviruses, coronaviruses, alphaviruses, paramyxoviruses, an enterovirus, and a poxvirus. Mechanistic studies revealed that loss of SPATA5 caused defects in rRNA processing and ribosome assembly, suggesting that this human protein may be a functional ortholog of yeast Drg1. These studies implicate specific ribosome biogenesis proteins as viral host dependency factors that are required for synthesis of virally encoded protein and accordingly, optimal viral replication. IMPORTANCE Viruses are well known for their ability to co-opt host ribosomes to synthesize viral proteins. The specific factors involved in translation of viral RNAs are not fully described. In this study, we implemented a unique genome-scale CRISPR screen to identify previously uncharacterized host factors that are important for the synthesis of virally encoded protein. We found that multiple genes involved in 60S ribosome biogenesis were required for viral RNA translation. Loss of these factors severely impaired viral replication. Mechanistic studies on the AAA ATPase SPATA5 indicate that this host factor is required for a late step in ribosome formation. These findings reveal insight into the identity and function of specific ribosome biogenesis proteins that are critical for viral infections.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Flavivirus , Humans , Ribosomes/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication , RNA, Viral/genetics , RNA, Viral/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism
2.
SLAS Discov ; 26(3): 336-344, 2021 03.
Article in English | MEDLINE | ID: covidwho-934236

ABSTRACT

The reuse of preexisting small molecules for a novel emerging disease threat is a rapid measure to discover unknown applications for previously validated therapies. A pertinent and recent example where such a strategy could be employed is in the fight against coronavirus disease 2019 (COVID-19). Therapies designed or discovered to target viral proteins also have off-target effects on the host proteome when employed in a complex physiological environment. This study aims to assess these host cell targets for a panel of FDA-approved antiviral compounds including remdesivir, using the cellular thermal shift assay (CETSA) coupled with mass spectrometry (CETSA MS) in noninfected cells. CETSA MS is a powerful method to delineate direct and indirect interactions between small molecules and protein targets in intact cells. Biologically active compounds can induce changes in thermal stability, in their primary binding partners, and in proteins that in turn interact with the direct targets. Such engagement of host targets by antiviral drugs may contribute to the clinical effect against the virus but can also constitute a liability. We present here a comparative study of CETSA molecular target engagement fingerprints of antiviral drugs to better understand the link between off-targets and efficacy.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Antiviral Agents/pharmacology , Cell Cycle Proteins/metabolism , Drug Evaluation, Preclinical/methods , Adenosine/analogs & derivatives , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Drug Repositioning , Furans/pharmacology , Hep G2 Cells , Humans , Mass Spectrometry , Proteomics/methods , Pyrroles/pharmacology , Triazines/pharmacology , United States , United States Food and Drug Administration , COVID-19 Drug Treatment
3.
J Comput Aided Mol Des ; 34(12): 1237-1259, 2020 12.
Article in English | MEDLINE | ID: covidwho-841071

ABSTRACT

Computational protein-ligand docking is well-known to be prone to inaccuracies in input receptor structures, and it is challenging to obtain good docking results with computationally predicted receptor structures (e.g. through homology modeling). Here we introduce a fragment-based docking method and test if it reduces requirements on the accuracy of an input receptor structures relative to non-fragment docking approaches. In this method, small rigid fragments are docked first using AutoDock Vina to generate a large number of favorably docked poses spanning the receptor binding pocket. Then a graph theory maximum clique algorithm is applied to find combined sets of docked poses of different fragment types onto which the complete ligand can be properly aligned. On the basis of these alignments, possible binding poses of complete ligand are determined. This docking method is first tested for bound docking on a series of Cytochrome P450 (CYP450) enzyme-substrate complexes, in which experimentally determined receptor structures are used. For all complexes tested, ligand poses of less than 1 Å root mean square deviations (RMSD) from the actual binding positions can be recovered. Then the method is tested for unbound docking with modeled receptor structures for a number of protein-ligand complexes from different families including the very recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protease. For all complexes, poses with RMSD less than 3 Å from actual binding positions can be recovered. Our results suggest that for docking with approximately modeled receptor structures, fragment-based methods can be more effective than common complete ligand docking approaches.


Subject(s)
Betacoronavirus/enzymology , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/drug effects , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/drug therapy , Viral Nonstructural Proteins/drug effects , ATPases Associated with Diverse Cellular Activities/chemistry , ATPases Associated with Diverse Cellular Activities/metabolism , COVID-19 , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Ligands , Models, Chemical , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Protein Conformation , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , SARS-CoV-2 , Transcription Factors/chemistry , Transcription Factors/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL